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MACHINE MODELS OF SELF-REPRODUCTION
BY
EDWARD F. MOORE

Introduction. The ability of living organisms to reproduce themselves has long
been considered to be one of their most characteristic features. Von Neumann was
the first to treat in any detail the problem of how to make machines reproduce
themselves in a purely mechanistic fashion as a way of throwing light on some
fundamental problems of biology and as a problem (of intrinsic interest aside from
biology) concerning the capabilities and limitations of machines. Over a period
of years von Neumann gave several individual lectures and several series of lectures
on The general and logical theory of automata, which partly dealt with self-repro-
ducing machines. One of the early individual lectures was reprinted in [17], but
some of the later lectures varied in content and in approach. I heard only one
series of the later lectures, but by reading and by hearsay I am acquainted with the
ideas of some of the others. At first he considered a kinematic model of self-
reproduction in which he considered three-dimensional physical objects, which
were the parts out of which the self-reproducing machine was to be built. The
machine was assumed to be in a stockroom in which unlimited supplies of these
parts were floating around (much like particles of food in a putrient medium), and
it found the parts which it needed and then assembled them to make a copy of
itself,

In his later lectures on this subject, von Neumann constructed a different model
somewhat more abstract and less analogous to the real world. He considered a
universe which is a 2-dimensional Euclidean space subdivided into square cells of
equal size, like the squares of graph paper or of a checkerboard. 1 will call such
a space a fessellation, but will somewhat modify the dictionary definition of
tessellation. Located in each of the cells of this tessellation there is to be one
copy of a finite-state machine. Each cell-machine is to be deterministic and
synchronous; that is, at each integer-valued time 7 > 0, the state of each cell-
machine is to depend only on its own state at time T — 1 and on the states of its
neighboring cell-machines at time 7— 1. All of the cell-machines are to be
exactly alike as to their list of states and the rule determining their transitions, but
different cell-machines are permitted to be in different states. The list of the
possible states of the cell-machines must include a special state called the quiescent
state, and all except a finite number of cell-machines will be in the quiescent state.
The quiescent state is to have the property that if any cell-machine and all of its
neighbors are in the quiescent state at time T — 1, then the cell-machine will be
in the quiescent state at time 7.

The entire system consisting of the underlying tessellation space, the set of
allowable states, the quiescent state, the rules for transitions between states, etc.,
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18 E. F. MOORE

will be called a tessellation structure. This tessellation structure differs from the
tessellation space in much the same way that a group (including the group product
and the inverse) differs from the set of elements of the group.

A finite block of cells of a tessellation will be called an array. A configuration
or a state of such an array is a function which associates a state with each .cell.
That is, a configuration of an array specifies what state each cell of .the array is in
at one particular time 7. An example of such a configuration is given in I-jlg. !,
where there are seven cells in the array, and the state of each cell-machine is
indicated by a sy nbol written in the cell.

Von Neumann considered the problem of choosing a tessellation structure such
that its cell-machine has only a small number of states, and then making up

X 1Yy Z

X 1 Z |Y | X

Ficure 1, Example of a tessellation, showing a configuration defined for only seven cells.

configuration of these which would have the property of being able to reproduce
itself. The details of constructing this would be somewhat like writing a digital
computer program and would avoid all the problems of motion, assembly, and
geometry which would be present in a kinematic model. ~ Von Neumann solved
most of the details of the problem of how a self-reproducing machine could be
constructed both by a kinematic model and by a tessellation model. Altho.ug.h
his work on this was not quite finished at the time of his death, publication of it is
planned [16].

Kinematic models of self-reproduction. Although von Neumann’s early dis-
cussions of self-reproduction were in terms of a kinematic model which is made of
parts which are in motion, he later changed to a tessellation model which is less
vivid and dramatic, less realistic, and less difficult to deal with mathematically.
However, there have been some quite interesting recent examples of kinematic
models which have been actually built and demonstrated.

One way of performing the necessary spatial motion by simply controlled elec-
trical means is to use model railroads. The starting, stopping, and reversing of
trains under electrical control is already easy without having to design and develop
new manipulating devices. Also, the rearranging of parts can be done by hav?ng
cars switched onto sidetracks. The necessary logical control and programming
can be built in the form of relay circuits mounted aboard the individual cars. The
self-reproducing machine is to be a train made up of a sequence of different ki_nds
of cars, and the cars are considered to be the elementary parts or raw materials,
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The actual construction of a model railroad layout and cars which perform this
was done by Jacobson [6]. He described several different models of varying
degrees of generality and actually constructed the simplest of these. This model
was partly trivial in certain respects and was the least general, with regard to self-
reproducing ability, of the models which he described.

However, other kinematic models somewhat more general and less trivial than
Jacobson’s, but based on techniques quite different from model railroading, have
been constructed by Penrose. The simplest one of these models (illustrated in
Fig. 1 of [19] and of [20] and in Fig. 2 of [21]) will be called Penrose’s basic model,
since his other models resemble this but have various modifications and other
features.

Penrose’s basic model makes use of only two kinds of units, called A units and
B units. Each of these is a single rigid piece of solid material, cut out in a shape
having certain hooks and interlocks. It is possible for a pair of these units to
hook together in two different ways to make an AB machine or a BA machine.
If a number of the unconnected units are placed in *“random order” in a rectangular
box of the right size containing an AB machine, and the box is shaken regularly,
more copies of the AB machine will be constructed by means of mechanical forces,
friction, and gravity alone without any electricity, magnetism, or chemical re-
actions being involved. If the unconnected units are similarly shaken with a BA
machine present, more copies of the BA machine will be constructed. Hence
either the AB or the BA machine can appropriately be called a seed. However, if
the unconnected units are similarly shaken with neither kind of seed present, no
“spontaneous generation™ occurs and no seeds are formed: but by shaking the
box with unusual force, “spontaneous generation™ can occur.

No picture of Penrose’s basic model is included with this paper, since if the
reader attempts the problem of how to design the shapes of the units A and B so
as to have the specified properties, the difficulties he will encounter in his attempt
will cause him to more readily appreciate the ingenuity of Penrose’s very simple
solution to this problem.

After constructing an exact copy of Penrose’s basic model, I have found that it
not only operates mechanically with reasonable satisfaction but is very useful in
suggesting to audiences some of the problems and possibilities of self-reproducing
machines.

There is one misunderstanding of the biological interpretation of Penrose’s
basic model which I should clear up. When this is shown to engineers, mathe-
maticians, or physical scientists, many of them assume that the two kinds of units
correspond to male and female individuals. This is not at all the reasonable
analogy. One of the AB or BA machines corresponds to an individual, and the
units correspond to distinct molecules of the chemical compounds of which
chromosomes are made. The fact that there are two kinds of units may mislead
persons who have forgotten their biology. In this case the reproduction is
asexual and the individual consists of only one chromosome made up of two mole-
cules. A more general and less trivial example of reproduction would have many
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units arranged in a long chain, more like a real chromosome. Penrose does in
fact give such more general models in his papers. Still more lifelike models which
would have several chromosomes and also have additional units arranged in
structures analogous to cytoplasm and cell walls have not yet been described in
print in detail by anyone.

Another kinematic model of self-reproduction (involving electromagnets and
electrets floating in a liquid) has been proposed by Morowitz [12], but has apparently
not been designed in detail or built, so it is not known how well such a machine
would work.

Tessellation models of self-reproduction. Before the general definitions and
descriptions of tessellation structures are given in further detail, the reader should
be cautioned that there are three different kinds of things which can be called
machines. The tessellation itself can be considered to be a machine, although in a
tessellation model of self-reproduction the tessellation is more naturally considered
to be the environment or the universe (including the supplies of parts or raw
materials) in which the self-reproduction takes place. A configuration (which is
restricted to an array of finite size) can be considered to be a machine, and in fact
it is a machine of this kind which can be shown to reproduce itself. A cell can be
considered to be a machine, since it has a list of states and transitions, but it
corresponds in the tessellation models of self-reproduction to one of the ele-
mentary parts out of which the machine is built. Because of the fact that these
three kinds of things can be called machines, it is necessary to be careful to avoid
any confusion between them. An example of a mistake which arisés in this way
is in the paper by Rosen [25], where it is asserted that there is a paradox involved
in the existence of a self-reproducing machine. This alleged paradox can best
be explained as originating from his failure to maintain the distinction between
the tessellation and the configuration, although he does not actually use these
words.

Tessellations of N-dimensional Euclidean space, for any positive integer N,
could be defined in a manner analogous to the case for N = 2; and the constructions
and the results would be very similar. In fact, N = 3 is the case of real biological
interest; and von Neumann stated in his Vanuxem lectures (Princeton University,
March 2-5, 1955) that he had at first thought that it might be necessary to use a
3-dimensional model, since the wiring diagram of the machine might turn out to
be non-planar. However, he said he had succeeded in devising a method for
wires to cross one another which could be used with what I have been calling a 2-
dimensional tessellation structure. It certainly is simpler to work with a 2-
dimensional space, since pictures can be drawn on paper to represent configurations.
Shannon has indicated to me (unpublished personal communication) a scheme for
a limited kind of self-reproduction which could be carried out with a 1-dimensional
tessellation structure, but the 2-dimensional model seems to be of greater interest.
Except where otherwise indicated, this paper will deal with tessellations which are
subdivisions of Euclidean 2-space into square cells.
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A tessellation structure should perhaps be formally defined as a quintuple
(N,T,S.g0,f). where N is a positive integer, T (the tessellation itself) is a subdivision
of Euclidean N-space into cells which are N-cubes of unit dimensions and whose
centers have integer coordinates, S is a finite set whose elements are called states,
gy is a distinguished member of S called the quiescent state, and f'is a function which
maps the set of all states of the 3¥ cells which are neighbors of any cell x at time
T — 1 into states of x at time T. However, this would be unnecessarily formal
and complicated for the present discussion and will be skipped with only this
brief mention.

In this paper, the neighbors of a given cell will be taken to be all of those cells
(including the cell itself) which have each of their coordinates differing by at most

DIV | D

DV |D

FiGure 2. The nine cells which are considered neighbors of the cell marked X.

1 from the coordinates of the given cell. In Fig. 2, all nine of the cells are neighbors
of the cell marked X. This definition permits the set of neighbors of all the cells
in a rectangular array to be rectangular, and hence it is easier to compute the
numbers of cells in certain arrays. The exact definition of neighbor used is not
too important. Von Neumann’s construction in [16] considers the five cells
labeled ¥ and X in Fig. 2 to be the ones of interest and permits the state of a cell
to depend on previous states of only these. However, his definition can be
included within mine, since I can merely specify the functional dependence of
the next state to be such that it does not actually depend on the state of the cells
labelled D.

The functional correspondence f, which specifies how each cell has its state, for
all time T > 0, depend on the states of the neighboring cells at time T — 1, is to
?Je the same for all cells of the plane. This is a homogeneity requirement, specify-
ing that the physical laws of this universe are to be the same in all parts of it. The
functional dependence f is also required to be such that a cell whose neighbors at
time 7 — 1 are all in the quiescent state will be itself in the quiescent state at time
T. In Fig. 3, the quiescent state is indicated by 0’s.

In order that the states of the entire tessellation will be constructively attainable,
we will require that the states at time 7' = 0 be such that all but a finite number of
cells are in the quiescent state. It then readily follows that at each time 7 >0
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all but a finite number of the cells will be in the quiescent state, although it is
possible for the number of non-quiescent cells to increase with increasing 7.

We will say that a configuration c is a copy of a configuration ¢, if there isa
translation of the plane which maps the array of ¢ onto the array of ¢’, and each
cell has the same state as the cell into which it is mapped.

We will say that a configuration c¢* contains n copies of a configuration c, if there
exist n disjoint subsets of the array of c*, and each of these subsets is a copy of c.

This definition is illustrated in Fig. 3, which shows a configuration which
contains only three copies of the configuration of Fig. I, although, if the word

X|yYylZzjo}|X|Y|Z]O

X ZI1Y ]| X1 Z|Y|X|D0

FiGure 3. This configuration contains three copies (but not four copies) of the
configuration of Fig. 1.

“disjoint” were changed to “distinct” in the above sentence, it would contain
four copies.

A configuration ¢ will be said to be capable of reproducing n offspring by time T
if, starting from the initial conditions of the entire tessellation at time = 0 such
that the set of all non-quiescent cells of the tessellation is an array whose con-
figuration is a copy of ¢, there is a time 7" << T such that at time 7" the set of all
non-quiescent cells will then be an array whose configuration contains at least n
copies of c.

A configuration will be said to be a self-reproducing configuration if for each
positive integer n, there exists a T such that ¢ is capable of reproducing n offspring
by time T.

The above definition does not rule out trivial examples of self-reproducing
configurations. Consider the tessellation structure such that there are only two
states, X and 0, and having the transition function f such that each cell will be
in state X at time 7 if at least one of its neighbors was in state X at time 7' — 1.
Then the configuration consisting of one cell in state X will be a self-reproducing
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configuration. This is more nearly a model of crystal growth than of self-
reproduction.

To obtain a’kind of self-reproduction which would certainly be considered non-
trivial, von Neumann required that each configuration contain a universal Turing
machine. It might be thought desirable to be able to avoid triviality by being
able to have a self-reproducing configuration which would contain a copy of any
given configuration, but Theorem 2 will show that this is impossible.

It is usually assumed that in reproduction of actual organisms, the population
can grow exponentially with time; for instance, the size of the poi)u]ation might
double once each generation. That this cannot occur in a tessellation universe is
indicated in the following theorem.

Tueorem 1. If a self-reproducing configuration is capable of reproducing f(T)
offspring by time T, then there exists a positive real number k such that f(T)< kT2

ProoFr. Let ¢ be the self-reproducing configuration. Let the smallest square
array large enough for a configuration containing a copy of ¢ be of size D x D.
Then at each time T, the total number of non-quiescent cells is at most (27 + D)%
If r is the number of cells-in the array of ¢, then f(T) << (2 T + D)?/r, from
which the conclusion of the theorem follows.

This Malthusian sort of argument, that the number of offspring cannot go up
faster than the square of the time, since there would not be room for them, depends
on the fact that there is a finite velocity of propagation of the non-quiescent region,
since each unit of time permits this region to grow only one cell in each direction.
This corresponds roughly to a physical limitation such as a finite velocity of light.

This argument also depends on the dimension of the space, since for an
N-dimensional tessellation structure the corresponding bound would be k7%,

At various points in the preceding discussion, the special nature of the time
T = 0 has been alluded to. It will be assumed that the cells of a tessellation
structure will be governed by the transition rules of the tessellation structure for all
T = 0, but for T'= 0 we can arbitrarily specify the initial conditions. That is, to
test whether a given configuration is self-reproducing we set up a copy of it,
surrounded by quiescent cells, at 7 = 0. This is the only time at which we permit
such an arbitrary configuration to be specified.

It happens that under certain reasonable assumptions about the tessellation
structure there will always exist configurations which cannot occur except at time
T =0. That is, these configurations are not only unstable, but they are non-
constructible in the sense that there is no configuration at time 7' — 1 which will
give rise to the given configuration at time T by means of the function f which
defines the rules for the transition from one state to another. Such a configuration
will be called a Garden-of-Eden configuration. This term, from the Biblical
account in the second and third chapters of Genesis, was suggested by John W.
Tukey.

Since a Garden-of-Eden configuration cannot be produced by any other con-
figuration, no self-reproducing configuration can contain a copy of a Garden-of-Eden
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configuration. Hence an investigation of the conditions under which they can
occur throws light on the limitations of the ability of machines to reproduce
themselves.

The conditions under which these Garden-of-Eden configurations can occur
involve the ability to perform erasing. After a blackboard has been erased, it is
no longer possible to tell what had been written there; and by analogy with this,
the term erasing is used by the designers of memory units in digital computers.

L L] F L] L ] F*
G G

H H

FiGure 4. The descriptions of the configurations of two different arrays of the same size,
as occurring at time T in the definition of an erasable configuration.

Erasing is an irreversible process whereby a given action produces a state from
which it is impossible to determine the preceding states from which it could have
arisen.

However, if we have a tessellation structure for which the transition function f
is such that the state of each cell is merely the previous state of the cell just to the
left of this, we would not want to consider that erasing was taking place. Within
a fixed array of cells we might not be able to reconstruct the past state, but the
information as to the past state has merely been shifted off to the right and not
destroyed. Thus, it is necessary for us to be careful in the formal definition of
erasing that we watch the cells which are neighbors of the configuration to be sure
that the information is not carried away to them. Inaddition to this, it is necessary
to specify what happens on the cells which are neighbors of these to be sure that
new information is not shifted in from outside. Thus the formal definition will be
somewhat involved.

Consider a pair of configurations of two arrays of the same size, as shown in
Fig. 4. Without loss of generality these arrays may be taken to be square. We
consider in each case an inner array, whose configuration is specified as being F
and F* respectively, at time 7. Next we consider the hollow square which
consists of the set of all the neighbors of the previous array which are not members
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of that array. The configuration of this array is required to be G at time T in each
case; that is, one configuration is a copy of the other.

Then we consider the similarly extended boundary array around these, which
we require to have the configuration H in each case; that is, the two configurations
are required to be copies of each other. We require that F =+ F*; that is, the
innermost arrays must have different configurations, but they must agree along
the two layers of boundary at time T.

h

FiGURe 5. The descriptions of the configurations of two identical arrays, as occurring at
time T + 1 in the definition of an erasable configuration.

If we have such a pair of configurations, and if the configurations which follow
them (shown in Fig. 5) at time T + | are copies of each other as far as the con-
figuration f of the inner array and the configuration g of the intermediate array
is concerned (note that the configuration / of the outer array cannot generally
even be specified, since the state of the cells of this array can depend on the previous
states of cells outside all of the arrays which have been considered), the pair of
configurations will be said to be mutually erasable.

It should be noted that the relation of being mutually erasable is transitive and
symmetric, hence configurations can be put into equivalence classes, each of whose
members are cither copies of each other or are mutually erasable.

A configuration ¢ will be said to be an erasable configuration if there exists
another configuration ¢ such that they are mutually erasable. An erasable
configuration was called a “configuration which can forget’” in [11], but the term
“erasable™ is not only less anthropomorphic but more in accordance with the
terminology used in electrical engineering.

It should be noticed that il ¢ is an erasable configuration and ¢’ is a conliguration
of a rectangular array such that ¢’ contains a copy of ¢, then ¢'is crasable.  This is
what permits us to consider am erasable configuration to be associated with a
square array without loss of generality,
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Not all tessellation structures are such that erasable conligurations of their cells
can be defined. If the function f defining the transitions and the states has the
property that such irreversible transitions cannot take place, then only a restricted
¢lass of methods of construction and computation can take place.

We now proceed to state the main result of this paper.

THEOREM 2. For a tessellation structure for which there exist erasable con-

Jfigurations, there exist Garden-of-Eden configurations.

First I will give a sketch of the intuitive idea of the proof, and then a detailed
proof will be given of the inequality from which this thcorem follows. Let n be

nxn

knxkn

FIGURE 6.  An array of size kn X kn, for use in proving Theorem 2.

an integer such that there is an array of size n X n which has an erasable con-
figuration. Then we consider, for an integer k to be chosen later in the proof,
an array of size kn x kn, as shown in Fig. 6.

Each of the k? arrays of size n X n, as shown in Fig. 6, is the proper size to
contain a copy of an erasable configuration; and k is to be chosen large enough
that, averaging over all configurations of the array of size kn x kn, there will often
be many such erasable configurations.

If we consider the array of size (kn — 2) x (kn — 2) into which this array is
mapped at time T + 1, where T is the time of the original array (again since the
cells along the border are not necessarily defined as to what state they will take
on), we can compute how many possible configurations or states it can have as
being A" 2" compared with A% for the array of Fig. 6, where A is the number
of states of each cell.

MACHINE MODELS OF SELF-REPRODUCTION 27

If we indicate the states of these two arrays in Fig. 7 and indicate which states
are mapped into which, we will note that whenever we start with a state containing
one erasable configuration, then this state and the other one which is mutually
erasable with it will both map into one state at time 7 4 1. Wherever we have
a state containing two copies of the n x n crasable configuration, we will have four
states at time 7 mapping into one state at time 7 + 1. In general, wherever we
have a state containing s copies of the erasable configuration, we have 2° states at
time 7 mapping into one state at time 7 + 1. Then we need only show that the
loss in number of states due to erasure is more than the loss due to the difference
between A= and 4",

Let us consider the logarithms of the numbers of states rather than the numbers
of states themselves. The logarithm of the ratio which indicates how many
states are lost because of this boundary layer increases approximately linearly with

STATES AT

TIME T
STATES AT .
TIME T +1 p

FIGURE 7. Diagram showing the states of the array at time T and the states into which they
make transitions at time T + 1.

k. Also, if we consider the logarithm indicating the number of states lost due to
erasure, this increases approximately proportionally with the area of the array.
This is because this logarithm indicating the states lost due to erasure increases with
the number of erasable configurations present, except that appropriate averaging
must be done over all states of the array. Since the loss due to erasure goes up
approximately with the square of k, then by choosing k large enough it can be
shown that more states are lost that way than by the shrinkage at the boundary
layer. Hence there must exist a state p (as shown in Fig. 7) of the (kn — 2) x
(kn — 2) array which cannot be reached from any of the states of the array at
time 7. This state p is the desired Garden-of-Eden configuration.

The detailed proof follows below. Consider the equivalence relation R defined
between n X n configurations which holds between any two configurations if they
are either mutually erasable or are copies of each other. Since, by the hypothesis
of the theorem, there is a pair of mutually erasable configurations of sizen X n, the
relation R divides the set of A" configurations of this size into at most A" — |
equivalence classes. Then consider two configurations ¢ and ¢’ of the kn X kn
array. The configuration ¢ will be said to have the relation R* to the configuration
¢’ if each of the k* subconfigurations of size n x n of configuration ¢ has the
relation R to the subconfiguration in the corresponding location in configuration
¢. Then R* is an equivalence relation, and the number of equivalence classes of
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R* is at most (A" — 1)*. Since any twe-configurations which are equivalent
under relation R* lead to the same configuration at time T + 1, in order to prove

the theorem, we need only prove that there exists a positive integer k sufficiently
large that

() (A=) gt

'l;o pr?ve this, we note that since A > landn > 1, A™ > 4" — | = 0, and so
(A" /(4™ — 1)) > 1. Thus we can choose a positive integer k such that

k = 4nflog (A" /(A" — 1)),

so that

log . (A" [(A™ — 1)) > 4nk,
and thus

n® n?y _~ 4n o
log ¢ (4™ — 1)/4™) < — < +5
By raising A4 to these powers,

(A": - ]);’A W A:_.;n,'k-,-al_a’k’l’

and hence
Au" N A(n’—.ln,fk-'-i.f.i.:’J_

By raising these to the k* power we obtain
(A nt |)f.-" = AW —akn H)

which is easily seen to be equivalent to (1), completing the proof of the existence
of Garden-of-Eden configurations.

Such a Garden-of-Eden configuration corresponds to a machine which cannot
arise as the result of any past state of its universe, but can occur only at time 7 = 0.
This also corresponds to a machine which cannot be built out of the available parts,
but whose physical structure can be described as an arrangement of those parts.

There are a number of assumptions about the nature of the tessellation structure,

some of which were hidden along the way in definitions. Listing them all together
below, it was assumed that

(1) The universe is homogeneous,

(2) Space and time take on only discrete integer values.
(3) Only local action can occur at any one time.

(4) The universe is in Euclidean N-space.

(5) The laws of behavior of the universe are deterministic.
(6) Erasing is possible.

From these six assumptions (and perhaps other hidden ones which I have not
noticed) it can be concluded that Garden-of-Eden configurations exist. Each of
these assumptions can be examined in detail, since there might be reason to wish
to prove a result similar to Theorem 2 in some mathematical model of the physical
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universe in which not all of these assumptions hold. In particular, if it could be
shown to hold in some universe of modern theoretical physics, it might have some
cosmological interest in indicating that certain states of the physical universe are
describable but not attainable.

The assumption (1) that the universe is homogeneous is used in that the possi-
bility of erasure in one place then gives the possibility of erasure in many places.

The assumption (2) that space and time are quantized is used in the method of
proof given above, but methods might be possible which would depend on integra-
tion in a continuous universe rather than counting in a discrete one.

The assumption (3) that the behavior at any location can depend on the im-
mediate past of only the immediate neighborhood is used to confine the effects
of any information coming in from outside an array to a thin boundary layer, and
it corresponds to an assumption that information cannot be transmitted faster
than the velocity of light.

The assumption (4) that the universe is in Euclidean N-space only requires that
we have a space in which regions can be found which are large enough that the
volume of the interior can be made arbitrarily many times as large as the volume
of a thin layer at the boundary.

The assumption (5) that the laws of the behavior of the universe are deterministic
prevent states from having more than one possible successor. If probabilistic
transitions were permitted, they would cause the states to branch apart; and it
might be necessary to have some way of insuring that this branching apart did not
have more effect than the erasing in order to prove the theorem.

The assumption (6) is vital to the proof, and one of the tessellation structures
already defined in this paper will serve as a counter-example showing that the
conclusion of the theorem does not hold when the other five assumptions hold but
this does not.

Assumption (6) violates Newtonian mechanics but not quantum mechanics.
However, assumption (5) violates quantum mechanics but not Newtonian
mechanics.

Further problems. There are many problems which can be formulated about
tessellation structures, tessellation models of self-reproduction, and kinematic
models of self-reproduction. A few are indicated below.

What can be done to make the statement that one machine is more general or
less trivial than another in its self-reproducing behavior more precise? There does
not seem to be a clear-cut line of demarcation between the trivial and the non-
trivial models. Could this relation of being less trivial in this respect be formalized
as a partial ordering between machines?

In the attempt to show how life could have arisen on the earth [18] by the chance
interaction of non-living materials, it would be desirable to have some way of
computing how likely this would be to occur. If there were some way of seeing
how complicated an assemblage of parts (in particular, molecules) must be in order
to have the self-reproducing property (and further, the property of being capable
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of undergoing evolution to produce much more complicated descendants), this
would certainly be of interest. An attempt in this direction, in characterizing
complexity in terms of bits of information, was made by Jacobson [6] for some of
the models ke described.

In a tessellation structure in which Garden-of-Eden configurations exist, how
large can the smallest array which has such a Garden-of-Eden configuration be?
Although the method of proof of Theorem 2 given in this paper gives a very large
size for an array having a Garden-of-Eden configuration, an array of 5 x 5 size
or smaller is large enough for each tessellation structure which I have examined in
detail.

How simple a tessellation structure (in terms of number of states or some other
measure of complexity) can permit a non-trivial self-reproducing configuration ?

Can a tessellation structure have a self-reproducing configuration without having
an erasable configuration?

Among all tessellation structures having  states, obtain upper and lower bounds
(or possibly exact values) on how many of them have erasable configurations, and
how many of them have self-reproducing configurations. In particular, prove that
as n increases, the fraction of tessellation structures which have erasable configura-
tions approaches 1.

In a tessellation structure which has erasable configurations, how large can the
smallest inner array (corresponding to F in Fig. 4) be? All such tessellation
structures which I have examined in detail have had erasable configurations where
this inner array consisted of only one cell. Can this be proved to be always possible ?

For a large machine which is either a tessellation model or a kinematic model of
self-reproduction, how can the steps of reproduction be going on in parallel rather
than serially? This would permit many parts of the machine to be produced at
once, rather than the slower one-at-a-time procedure in the machines proposed by
Penrose [20], von Neumann [16], and Jacobson [6].

Other references. References [1] through [31] of this paper are intended to give
thorough coverage of what has been written on machine models of self-repro-
duction. References [32] through [48] give only a very small part of the literature
on the somewhat related subjects of finite state machines, sequential circuits, and
iterative circuits. Brief mention will be made in the next few paragraphs of those
papers which have not already been cited in this paper.

Switching circuits whose circuit configuration extends repetitively throughout
Euclidean n-dimensional space give an electrical realization of what have been
called tessellation structures in this paper, and the circuits themselves are usually
called irerative circuits. The work of Burks [2; 33] and of Church [5] deals with
such circuits for arbitrary n. The work of Unger [47] and of Holland [38] deals
with possible applications of computers built of such iterative circuits, chiefly for
n = 2. lterative one-dimensional circuits are treated in [37; 40; 41; 34].

The work of Burks [2; 3] is about tessellation structures, tessellation models of
self-reproduction, and some of the problems about von Neumann's models. The
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work of Myhill [13] gives a partial description of a model intermediate in
characteristics between von Neumann’s kinematic model and his tessellation model.
In [14], starting from some axioms assumed to describe the behavior of machines
capable of producing other machines, a proof is given, using arguments from
recursive function theory, that machines can build other machines which are
improvements of themselves, although the improvement is in a sense whic!ll may
be of more interest to a logician than to a biologist, since it involves the ability to
print out larger classes of true theorems. .

There are several other items [1; 10; 22; 23; 24] which give further explanations
and developments of the models of Penrose.

Ulam [28] states a problem somewhat similar to the problem solved by TheorFm
2 of this paper. Some practical and economic questions relating to construction
of actual working models of self-reproducing machines are discussed in [9] and [31].

Kemeny [7] gives the most detailed discussion yet published of von Neumann’s
tessellation models of self-reproduction. Shannon [27] gives a general sketch of
von Neumann’s ideas, and the remaining papers [4; 8; 26; 30] make some reference
to self-reproducing machines, although they mainly deal with other kinds of
machines.

Ulam [29] considers combinatorial problems of describing the configurations
which arise in various simple tessellation structures.

The abstract theory of machines which have only a finite number of states is
treated in [35; 36; 43; 45; 46; 48], without emphasizing any electrical circuit
realization of these machines. The electrical circuits which realize such machines
are called sequential circuits, and are treated in [32; 34; 39; 40; 42; 44). Mapy
other references on sequential circuits, iterative circuits, and finite-state sequential
machines are cited in [32; 35; 36; 41; 42; 45; 48], and others.
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